Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
J Virol ; 97(4): e0193222, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022231

RESUMO

High-throughput sequences were generated from DNA and cDNA from four Southern white rhinoceros (Ceratotherium simum simum) located in the Taronga Western Plain Zoo in Australia. Virome analysis identified reads that were similar to Mus caroli endogenous gammaretrovirus (McERV). Previous analysis of perissodactyl genomes did not recover gammaretroviruses. Our analysis, including the screening of the updated white rhinoceros (Ceratotherium simum) and black rhinoceros (Diceros bicornis) draft genomes identified high-copy orthologous gammaretroviral ERVs. Screening of Asian rhinoceros, extinct rhinoceros, domestic horse, and tapir genomes did not identify related gammaretroviral sequences in these species. The newly identified proviral sequences were designated SimumERV and DicerosERV for the white and black rhinoceros retroviruses, respectively. Two long terminal repeat (LTR) variants (LTR-A and LTR-B) were identified in the black rhinoceros, with different copy numbers associated with each (n = 101 and 373, respectively). Only the LTR-A lineage (n = 467) was found in the white rhinoceros. The African and Asian rhinoceros lineages diverged approximately 16 million years ago. Divergence age estimation of the identified proviruses suggests that the exogenous retroviral ancestor of the African rhinoceros ERVs colonized their genomes within the last 8 million years, a result consistent with the absence of these gammaretroviruses from Asian rhinoceros and other perissodactyls. The black rhinoceros germ line was colonized by two lineages of closely related retroviruses and white rhinoceros by one. Phylogenetic analysis indicates a close evolutionary relationship with ERVs of rodents including sympatric African rats, suggesting a possible African origin of the identified rhinoceros gammaretroviruses. IMPORTANCE Rhinoceros genomes were thought to be devoid of gammaretroviruses, as has been determined for other perissodactyls (horses, tapirs, and rhinoceros). While this may be true of most rhinoceros, the African white and black rhinoceros genomes have been colonized by evolutionarily young gammaretroviruses (SimumERV and DicerosERV for the white and black rhinoceros, respectively). These high-copy endogenous retroviruses (ERVs) may have expanded in multiple waves. The closest relative of SimumERV and DicerosERV is found in rodents, including African endemic species. Restriction of the ERVs to African rhinoceros suggests an African origin for the rhinoceros gammaretroviruses.


Assuntos
Evolução Biológica , Retrovirus Endógenos , Gammaretrovirus , Perissodáctilos , Animais , Camundongos , Ratos , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Gammaretrovirus/classificação , Gammaretrovirus/genética , Cavalos/genética , Cavalos/virologia , Perissodáctilos/genética , Perissodáctilos/virologia , Filogenia , Provírus/genética
2.
J Virol ; 97(1): e0179522, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36598198

RESUMO

Activation-induced cytidine deaminase/apolipoprotein B mRNA editing catalytic polypeptide-like (AID/APOBEC) proteins are cytosine deaminases implicated in diverse biological functions. APOBEC1 (A1) proteins have long been thought to regulate lipid metabolism, whereas the evolutionary significance of A1 proteins in antiviral defense remains largely obscure. Endogenous retroviruses (ERVs) document past retroviral infections and are ubiquitous within the vertebrate genomes. Here, we identify the A1 gene repertoire, characterize the A1-mediated mutation footprints in ERVs, and interrogate the evolutionary arms race between A1 genes and ERVs across vertebrate species. We find that A1 genes are widely present in tetrapods, recurrently amplified and lost in certain lineages, suggesting that A1 genes might have originated during the early evolution of tetrapods. A1-mediated mutation footprints can be detected in ERVs across tetrapods. Moreover, A1 genes appear to have experienced episodic positive selection in many tetrapod lineages. Taken together, we propose that a long-running arms race between A1 genes and retroviruses might have persisted throughout the evolutionary course of tetrapods. IMPORTANCE APOBEC3 (A3) genes have been thought to function in defense against retroviruses, whereas the evolutionary significance of A1 proteins in antiviral defense remains largely obscure. In this study, we identify the A1 gene repertoire, characterize the A1-mediated mutation footprints in endogenous retroviruses (ERVs), and explore the evolutionary arms race between A1 genes and ERVs across vertebrate species. We found A1 proteins originated during the early evolution of tetrapods, and detected the footprints of A1-induced hypermutations in retroviral fossils. A1 genes appear to have experienced pervasive positive selection in tetrapods. Our study indicates a long-running arms race between A1 genes and retroviruses taking place throughout the evolutionary course of tetrapods.


Assuntos
Desaminase APOBEC-1 , Retrovirus Endógenos , Evolução Molecular , Infecções por Retroviridae , Animais , Desaminase APOBEC-1/genética , Desaminase APOBEC-1/imunologia , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Retrovirus Endógenos/imunologia , Mutação , Filogenia , Infecções por Retroviridae/imunologia , Vertebrados/imunologia
3.
J Virol ; 96(8): e0207221, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35389232

RESUMO

Retroviruses are widely distributed in all vertebrates, as are their endogenous forms, endogenous retroviruses (ERV), which serve as "fossil" evidence to trace the ancient origins and history of virus-host interactions over millions of years. The retroviral envelope (Env) plays a significant role in host range determination, but major information on their genetic diversification and evolution in anamniotes is lacking. Here, by incorporating multiple-round in silico similarity search and phylogenomic analysis, more than 30,000 copies of ERV lineages with gamma-type Env (GTE), covalently associated Env, were discovered by searching against all fish and amphibian genomes and transcriptomic assemblies, but no beta-type Env (BTE), noncovalently associated Env, was found. Furthermore, a nine-type classification system of anamniote GTE was proposed by combining phylogenetic and domain/motif analyses. The elastic genomic organization and overall phylogenetic incongruence between anamniotic Env and its neighboring polymerase (Pol) implied that early retroviral diversification in anamniotic vertebrates was facilitated by frequent recombination. At last, host cellular opioid growth factor receptor (OGFr) gene capturing by anamniotic ERVs with GTE was reported for the first time. Overall, our findings overturn traditional Pol genotyping and reveal a complex evolutionary history of anamniotic retroviruses inferred by Env evolution. IMPORTANCE Although the retroviral envelope (Env) protein in amniotes has been well studied, its evolutionary history in anamniotic vertebrates is ambiguous. By analyzing more than 30,000 copies of ERV lineages with gamma-type Env (GTE) in anamniotes, several important evolutionary features were identified. First, GTE was found to be widely distributed among different amphibians and fish. Second, nine types of GTE were discovered and defined, revealing their great genetic diversity. Third, the incongruence between the Env and Pol phylogenies suggested that frequent recombination shaped the early evolution of anamniote retroviruses. Fourth, an ancient horizontal gene transfer event was discovered from anamniotes to ERVs with GTE. These findings reveal a complex evolution pattern for retroviral Env in anamniotes.


Assuntos
Retrovirus Endógenos , Evolução Molecular , Produtos do Gene env , Variação Genética , Animais , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Produtos do Gene env/genética , Filogenia , Vertebrados/genética
4.
Microbiol Spectr ; 9(3): e0225421, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34908463

RESUMO

Endogenous retroviruses (ERVs) occupy a substantial fraction of mammalian genomes. However, whether ERVs extensively exist in ancient vertebrates remains unexplored. Here, we performed a genome-wide characterization of ERVs in a zebrafish (Danio rerio) model. Approximately 3,315 ERV-like elements (DrERVs) were identified as Gypsy, Copia, Bel, and class I-III groups. DrERVs accounted for approximately 2.3% of zebrafish genome and were distributed in all 25 chromosomes, with a remarkable bias on chromosome 4. Gypsy and class I are the two most abundant groups with earlier insertion times. The vast majority of the DrERVs have varied structural defects. A total of 509 gag and 71 env genes with coding potentials were detected. The env-coding elements were well-characterized and classified into four subgroups. A ERV-E4.8.43-DanRer element shows high similarity with HERV9NC-int in humans and analogous sequences were detected in species spanning from fish to mammals. RNA-seq data showed that hundreds of DrERVs were expressed in embryos and tissues under physiological conditions, and most of them exhibited stage and tissue specificity. Additionally, 421 DrERVs showed strong responsiveness to virus infection. A unique group of DrERVs with immune-relevant genes, such as fga, ddx41, ftr35, igl1c3, and tbk1, instead of intrinsic viral genes were identified. These DrERVs are regulated by transcriptional factors binding at the long terminal repeats. This study provided a survey of the composition, phylogeny, and potential functions of ERVs in a fish model, which benefits the understanding of the evolutionary history of ERVs from fish to mammals. IMPORTANCE Endogenous retroviruses (ERVs) are relics of past infection that constitute up to 8% of the human genome. Understanding the genetic evolution of the ERV family and the interplay of ERVs and encoded RNAs and proteins with host function has become a new frontier in biology. Fish, as the most primitive vertebrate host for retroviruses, is an indispensable integral part for such investigations. In the present study, we report the genome-wide characterization of ERVs in zebrafish, an attractive model organism of ancient vertebrates from multiple perspectives, including composition, genomic organization, chromosome distribution, classification, phylogeny, insertion time, characterization of gag and env genes, and expression profiles in embryos and tissues. The result helps uncover the evolutionarily conserved and fish-specific ERVs, as well as the immune-relevant ERVs in response to virus infection. This study demonstrates the previously unrecognized abundance, diversification, and extensive activity of ERVs at the early stage of ERV evolution.


Assuntos
Retrovirus Endógenos/genética , Retrovirus Endógenos/isolamento & purificação , Peixe-Zebra/genética , Peixe-Zebra/virologia , Animais , Cromossomos/virologia , Retrovirus Endógenos/classificação , Retrovirus Endógenos/fisiologia , Evolução Molecular , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Variação Genética , Genoma , Humanos , Filogenia , Integração Viral
5.
Retrovirology ; 18(1): 36, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34753509

RESUMO

BACKGROUND: Retroviruses utilize multiple unique RNA elements to control RNA processing and translation. However, it is unclear what functional RNA elements are present in endogenous retroviruses (ERVs). Gene co-option from ERVs sometimes entails the conservation of viral cis-elements required for gene expression, which might reveal the RNA regulation in ERVs. RESULTS: Here, we characterized an RNA element found in ERVs consisting of three specific sequence motifs, called SPRE. The SPRE-like elements were found in different ERV families but not in any exogenous viral sequences examined. We observed more than a thousand of copies of the SPRE-like elements in several mammalian genomes; in human and marmoset genomes, they overlapped with lineage-specific ERVs. SPRE was originally found in human syncytin-1 and syncytin-2. Indeed, several mammalian syncytin genes: mac-syncytin-3 of macaque, syncytin-Ten1 of tenrec, and syncytin-Car1 of Carnivora, contained the SPRE-like elements. A reporter assay revealed that the enhancement of gene expression by SPRE depended on the reporter genes. Mutation of SPRE impaired the wild-type syncytin-2 expression while the same mutation did not affect codon-optimized syncytin-2, suggesting that SPRE activity depends on the coding sequence. CONCLUSIONS: These results indicate multiple independent invasions of various mammalian genomes by retroviruses harboring SPRE-like elements. Functional SPRE-like elements are found in several syncytin genes derived from these retroviruses. This element may facilitate the expression of viral genes, which were suppressed due to inefficient codon frequency or repressive elements within the coding sequences. These findings provide new insights into the long-term evolution of RNA elements and molecular mechanisms of gene expression in retroviruses.


Assuntos
Retrovirus Endógenos/genética , Regulação Viral da Expressão Gênica , Mamíferos/genética , Mamíferos/virologia , RNA Viral/genética , Animais , Callithrix/genética , Callithrix/virologia , Retrovirus Endógenos/classificação , Retrovirus Endógenos/isolamento & purificação , Evolução Molecular , Produtos do Gene env/química , Produtos do Gene env/genética , Genoma , Humanos , Macaca/genética , Macaca/virologia , Proteínas da Gravidez/química , Proteínas da Gravidez/genética , RNA Viral/química
6.
Retrovirology ; 18(1): 20, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261506

RESUMO

BACKGROUND: Retroviruses exist as exogenous infectious agents and as endogenous retroviruses (ERVs) integrated into host chromosomes. Such endogenous retroviruses (ERVs) are grouped into three classes roughly corresponding to the seven genera of infectious retroviruses: class I (gamma-, epsilonretroviruses), class II (alpha-, beta-, delta-, lentiretroviruses) and class III (spumaretroviruses). Some ERVs have counterparts among the known infectious retroviruses, while others represent paleovirological relics of extinct or undiscovered retroviruses. RESULTS: Here we identify an intact ERV in the Anuran amphibian, Xenopus tropicalis. XtERV-S has open reading frames (ORFs) for gag, pol (polymerase) and env (envelope) genes, with a small additional ORF in pol and a serine tRNA primer binding site. It has unusual features and domain relationships to known retroviruses. Analyses based on phylogeny and functional motifs establish that XtERV-S gag and pol genes are related to the ancient env-less class III ERV-L family but the surface subunit of env is unrelated to known retroviruses while its transmembrane subunit is class I-like. LTR constructs show transcriptional activity, and XtERV-S transcripts are detected in embryos after the maternal to zygotic mid-blastula transition and before the late tailbud stage. Tagged Gag protein shows typical subcellular localization. The presence of ORFs in all three protein-coding regions along with identical 5' and 3' LTRs (long terminal repeats) indicate this is a very recent germline acquisition. There are older, full-length, nonorthologous, defective copies in Xenopus laevis and the distantly related African bullfrog, Pyxicephalus adspersus. Additional older, internally deleted copies in X. tropicalis carry a 300 bp LTR substitution. CONCLUSIONS: XtERV-S represents a genera-spanning member of the largely env-less class III ERV that has ancient and modern copies in Anurans. This provirus has an env ORF with a surface subunit unrelated to known retroviruses and a transmembrane subunit related to class I gammaretroviruses in sequence and organization, and is expressed in early embryogenesis. Additional XtERV-S-related but defective copies are present in X. tropicalis and other African frog taxa. XtERV-S is an unusual class III ERV variant, and it may represent an important transitional retroviral form that has been spreading in African frogs for tens of millions of years.


Assuntos
Retrovirus Endógenos/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma Viral , Fases de Leitura Aberta/genética , Sequências Repetidas Terminais/genética , Xenopus/genética , Xenopus/virologia , Animais , Retrovirus Endógenos/classificação , Evolução Molecular , Produtos do Gene gag/genética , Produtos do Gene pol/genética , Provírus/genética , Infecções por Retroviridae/virologia
7.
J Virol ; 95(18): e0035321, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232703

RESUMO

Feline leukemia virus (FeLV) is associated with a range of clinical signs in felid species. Differences in disease processes are closely related to genetic variation in the envelope (env) region of the genome of six defined subgroups. The primary hosts of FeLV are domestic cats of the Felis genus that also harbor endogenous FeLV (enFeLV) elements stably integrated in their genomes. EnFeLV elements display 86% nucleotide identity to exogenous, horizontally transmitted FeLV (FeLV-A). Variation between enFeLV and FeLV-A is primarily in the long terminal repeat (LTR) and env regions, which potentiates generation of the FeLV-B recombinant subgroup during natural infection. The aim of this study was to examine recombination behavior of exogenous FeLV (exFeLV) and enFeLV in a natural FeLV epizootic. We previously described that of 65 individuals in a closed colony, 32 had productive FeLV-A infection, and 22 of these individuals had detectable circulating FeLV-B. We cloned and sequenced the env gene of FeLV-B, FeLV-A, and enFeLV spanning known recombination breakpoints and examined between 1 and 13 clones in 22 animals with FeLV-B to assess sequence diversity and recombination breakpoints. Our analysis revealed that FeLV-A sequences circulating in the population, as well as enFeLV env sequences, are highly conserved. We documented many recombination breakpoints resulting in the production of unique FeLV-B genotypes. More than half of the cats harbored more than one FeLV-B variant, suggesting multiple recombination events between enFeLV and FeLV-A. We concluded that FeLV-B was predominantly generated de novo within each host, although we could not definitively rule out horizontal transmission, as nearly all cats harbored FeLV-B sequences that were genetically highly similar to those identified in other individuals. This work represents a comprehensive analysis of endogenous-exogenous retroviral interactions with important insights into host-virus interactions that underlie disease pathogenesis in a natural setting. IMPORTANCE Feline leukemia virus (FeLV) is a felid retrovirus with a variety of disease outcomes. Exogenous FeLV-A is the virus subgroup almost exclusively transmitted between cats. Recombination between FeLV-A and endogenous FeLV analogues in the cat genome may result in emergence of largely replication-defective but highly virulent subgroups. FeLV-B is formed when the 3' envelope (env) region of endogenous FeLV (enFeLV) recombines with that of the exogenous FeLV (exFeLV) during viral reverse transcription and integration. Both domestic cats and wild relatives of the Felis genus harbor enFeLV, which has been shown to limit FeLV-A disease outcome. However, enFeLV also contributes genetic material to the recombinant FeLV-B subgroup. This study evaluates endogenous-exogenous recombination outcomes in a naturally infected closed colony of cats to determine mechanisms and risk of endogenous retroviral recombination during exogenous virus exposure that leads to enhanced virulence. While FeLV-A and enFeLV env regions were highly conserved from cat to cat, nearly all individuals with emergent FeLV-B had unique combinations of genotypes, representative of a wide range of recombination sites within env. The findings provide insight into unique recombination patterns for emergence of new pathogens and can be related to similar viruses across species.


Assuntos
Retrovirus Endógenos/genética , Genes env , Vírus da Leucemia Felina/genética , Leucemia Felina/virologia , RNA Viral/genética , Recombinação Genética , Infecções por Retroviridae/virologia , Animais , Gatos , Retrovirus Endógenos/classificação , Feminino , Vírus da Leucemia Felina/classificação , Masculino , Sequências Repetidas Terminais
8.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072259

RESUMO

Herpes simplex virus type 1 (HSV-1) is a neurotropic alphaherpesvirus that can infect the peripheral and central nervous systems, and it has been implicated in demyelinating and neurodegenerative processes. Transposable elements (TEs) are DNA sequences that can move from one genomic location to another. TEs have been linked to several diseases affecting the central nervous system (CNS), including multiple sclerosis (MS), a demyelinating disease of unknown etiology influenced by genetic and environmental factors. Exogenous viral transactivators may activate certain retrotransposons or class I TEs. In this context, several herpesviruses have been linked to MS, and one of them, HSV-1, might act as a risk factor by mediating processes such as molecular mimicry, remyelination, and activity of endogenous retroviruses (ERVs). Several herpesviruses have been involved in the regulation of human ERVs (HERVs), and HSV-1 in particular can modulate HERVs in cells involved in MS pathogenesis. This review exposes current knowledge about the relationship between HSV-1 and human ERVs, focusing on their contribution as a risk factor for MS.


Assuntos
Doenças Desmielinizantes/etiologia , Suscetibilidade a Doenças , Retrovirus Endógenos/fisiologia , Herpes Simples/complicações , Herpes Simples/virologia , Herpesvirus Humano 1 , Animais , Evolução Biológica , Elementos de DNA Transponíveis , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Retrovirus Endógenos/classificação , Humanos , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Retroelementos
9.
Arch Virol ; 166(4): 1007-1013, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33547957

RESUMO

Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs, and they produce viral particles that are able to infect human cells and therefore pose a special risk for xenotransplantation. In contrast to other pig microorganisms that also pose a risk, such as porcine cytomegalovirus and hepatitis E virus, PERVs cannot be eliminated from pigs by vaccines, antiviral drugs, early weaning, or embryo transfer. Since PERVs are relevant for xenotransplantation, their biology and origin are of great interest. Recent studies have shown that PERVs are the result of a transspecies transmission of precursor retroviruses from different animals and further evolution in the pig genome. PERVs acquired different long terminal repeats (LTRs), and recombination took place. In parallel, it has been shown that the activity of the LTRs and recombination in the envelope are important for the transmissibility and pathogenesis of PERVs. Transspecies transmission of retroviruses is common, a well-known example being the transmission of precursor retroviruses from non-human primates to humans, resulting in human immunodeficiency virus (HIV). Here, recent findings concerning the origin of PERVs, their LTRs, and recombination events that occurred during evolution are reviewed and compared with other findings regarding transspecies transmission of retroviruses.


Assuntos
Retrovirus Endógenos/genética , Evolução Molecular , Suínos/virologia , Animais , Retrovirus Endógenos/classificação , Genoma Viral , Humanos , Prevalência , Recombinação Genética , Retroviridae/classificação , Retroviridae/genética , Zoonoses/transmissão , Zoonoses/virologia
10.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177199

RESUMO

Endogenous retroviruses (ERVs) are the remnants of past retroviral infections. Fossil records of class II retroviruses have been discovered in a range of vertebrates, with the exception of amphibians, which are known only to possess class I and class III-like ERVs. Through genomic mining of all available amphibian genomes, we identified, for the first time, class II ERVs in amphibians. The class II ERVs were found only in Gymnophiona (caecilians) and not in the genomes of the other amphibian orders, Anura (frogs and toads) and Caudata (salamanders and newts), which are phylogenetically closely related. Therefore, the ERV endogenization occurred after the split of Gymnophiona, Anura, and Caudata (323 million years ago). Investigation of phylogenetic relationship and genomic structure revealed that the ERVs may originate from alpha- or betaretroviruses. We offer evidence that class II ERVs infiltrated amphibian genomes recently and may still have infectious members. Remarkably, certain amphibian class II ERVs can be expressed in diverse tissues. This discovery closes the major gap in the retroviral fossil record of class II ERVs and provides important insights into the evolution of class II ERVs in vertebrates.IMPORTANCE Class II retroviruses, largely distributed among mammals and birds, are of particular importance for medicine and economics. Class II ERVs have been discovered in a range of vertebrates, with the exception of amphibians, which are known only to possess class I and class III-like ERVs. Here, for the first time, we discovered class II ERVs in amphibians. We also revealed that the ERVs may originate from alpha- or betaretroviruses. We revealed that class II ERVs were integrated into amphibian genomes recently and certain amphibian class II ERVs can be expressed in diverse tissues. Our discovery closes the major gap in the retroviral fossil record of class II ERVs, and also indicates that amphibians may be still infected by class II retroviruses.


Assuntos
Anfíbios/virologia , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Evolução Molecular , Variação Genética , Genoma Viral , Filogenia , Animais , Biologia Computacional
11.
Viruses ; 12(6)2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545287

RESUMO

Human Endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that represent a large fraction of our genome. Their transcriptional activity is finely regulated in early developmental stages and their expression is modulated in different cell types and tissues. Such activity has an impact on human physiology and pathology that is only partially understood up to date. Novel high-throughput sequencing tools have recently allowed for a great advancement in elucidating the various HERV expression patterns in different tissues as well as the mechanisms controlling their transcription, and overall, have helped in gaining better insights in an all-inclusive understanding of the impact of HERVs in biology of the host.


Assuntos
Retrovirus Endógenos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Retrovirus Endógenos/classificação , Retrovirus Endógenos/isolamento & purificação , Genoma Humano , Humanos , Infecções por Retroviridae/virologia
12.
Microbes Infect ; 22(8): 366-370, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32035224

RESUMO

The human endogenous retroviruses (HERVs) are endogenous retroviruses that are inserted into the germ cell DNA of humans over 30 million years ago. Using real-time RT-PCR we describe HERV modulation by commensal microbes in the human gut. Infants, exclusively or predominant breast milk feeding, less than 12 weeks of age, during bacteria gut colonization, were assessed for eligibility. Our data demonstrate that the colonization with commensal microbes, in particular, Bifidobacterium spp., of the gut causes modulation of HERVs.


Assuntos
Retrovirus Endógenos/genética , Microbioma Gastrointestinal/fisiologia , Transcrição Gênica , Bactérias/classificação , Bactérias/isolamento & purificação , Aleitamento Materno , Retrovirus Endógenos/classificação , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Produtos do Gene pol/sangue , Produtos do Gene pol/genética , Humanos , Lactente
13.
Arch Virol ; 164(11): 2735-2745, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31486907

RESUMO

Koala retrovirus (KoRV) is unique among endogenous retroviruses because its endogenization is still active. Two major KoRV subtypes, KoRV-A and B, have been described, and KoRV-B is associated with disease and poses a health threat to koalas. Here, we investigated the co-prevalence of KoRV-A and KoRV-B, detected by type-specific PCR and sequencing, and their impact on the health of koalas in three Japanese zoos. We also investigated KoRV proviral loads and found varying amounts of genomic DNA (gDNA) in peripheral blood mononuclear cells (PBMCs). We found that 100% of the koalas examined were infected with KoRV-A and 60% (12/20) were coinfected with KoRV-B. The KoRV-A sequence was highly conserved, whereas the KoRV-B sequence varied among individuals. Interestingly, we observed possible vertical transmission of KoRV-B in one offspring in which the KoRV-B sequence was similar to that of the father but not the mother. Moreover, we characterized the KoRV growth patterns in concanavalin-A-stimulated PBMCs isolated from KoRV-B-coinfected or KoRV-B-uninfected koalas. We quantified the KoRV provirus in gDNA and the KoRV RNA copy numbers in cells and culture supernatants by real-time PCR at days 4, 7, and 14 post-seeding. As the study population is housed in captivity, a longitudinal study of these koalas may provide an opportunity to study the transmission mode of KoRV-B. In addition, we characterized KoRV isolates by infecting tupaia cells. The results suggested that tupaia may be used as an infection model for KoRV. Thus, this study may enhance our understanding of KoRV-B coinfection and transmission in the captive koalas.


Assuntos
Retrovirus Endógenos/genética , Gammaretrovirus/patogenicidade , Phascolarctidae/virologia , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/veterinária , Animais , Animais de Zoológico/virologia , Linhagem Celular , Coinfecção/veterinária , Coinfecção/virologia , Retrovirus Endógenos/classificação , Retrovirus Endógenos/isolamento & purificação , Feminino , Gammaretrovirus/classificação , Gammaretrovirus/genética , Gammaretrovirus/isolamento & purificação , Japão/epidemiologia , Masculino , Provírus/genética , Infecções por Retroviridae/virologia , Tupaia/virologia , Carga Viral
14.
Viruses ; 11(7)2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336856

RESUMO

A recent study reported the discovery of an endogenous reptilian foamy virus (FV), termed ERV-Spuma-Spu, found in the genome of tuatara. Here, we report two novel reptilian foamy viruses also identified as endogenous FVs (EFVs) in the genomes of panther gecko (ERV-Spuma-Ppi) and Schlegel's Japanese gecko (ERV-Spuma-Gja). Their presence indicates that FVs are capable of infecting reptiles in addition to mammals, amphibians, and fish. Numerous copies of full length ERV-Spuma-Spu elements were found in the tuatara genome littered with in-frame stop codons and transposable elements, suggesting that they are indeed endogenous and are not functional. ERV-Spuma-Ppi and ERV-Spuma-Gja, on the other hand, consist solely of a foamy virus-like env gene. Examination of host flanking sequences revealed that they are orthologous, and despite being more than 96 million years old, their env reading frames are fully coding competent with evidence for strong purifying selection to maintain expression and for them likely being transcriptionally active. These make them the oldest EFVs discovered thus far and the first documented EFVs that may have been co-opted for potential cellular functions. Phylogenetic analyses revealed a complex virus-host co-evolutionary history and cross-species transmission routes of ancient FVs.


Assuntos
Retrovirus Endógenos/classificação , Evolução Molecular , Interações entre Hospedeiro e Microrganismos , Lagartos/virologia , Infecções por Retroviridae/veterinária , Spumavirus/classificação , Animais , Genoma Viral , Filogenia
15.
J Virol ; 93(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31167914

RESUMO

Eight percent of the human genome is composed of human endogenous retroviruses (HERVs), remnants of ancestral germ line infections by exogenous retroviruses, which have been vertically transmitted as Mendelian characters. The HML-6 group, a member of the class II betaretrovirus-like viruses, includes several proviral loci with an increased transcriptional activity in cancer and at least two elements that are known for retaining an intact open reading frame and for encoding small proteins such as ERVK3-1, which is expressed in various healthy tissues, and HERV-K-MEL, a small Env peptide expressed in samples of cutaneous and ocular melanoma but not in normal tissues.IMPORTANCE We reported the distribution and genetic composition of 66 HML-6 elements. We analyzed the phylogeny of the HML-6 sequences and identified two main clusters. We provided the first description of a Rec domain within the env sequence of 23 HML-6 elements. A Rec domain was also predicted within the ERVK3-1 transcript sequence, revealing its expression in various healthy tissues. Evidence about the context of insertion and colocalization of 19 HML-6 elements with functional human genes are also reported, including the sequence 16p11.2, whose 5' long terminal repeat overlapped the exon of one transcript variant of a cellular zinc finger upregulated and involved in hepatocellular carcinoma. The present work provides the first complete overview of the HML-6 elements in GRCh37(hg19), describing the structure, phylogeny, and genomic context of insertion of each locus. This information allows a better understanding of the genetics of one of the most expressed HERV groups in the human genome.


Assuntos
Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Genoma Humano , Filogenia , Provírus/genética , Mapeamento Cromossômico , Biologia Computacional/métodos , Loci Gênicos , Humanos , Anotação de Sequência Molecular , Fases de Leitura Aberta , Sequências Repetidas Terminais
16.
Retrovirology ; 16(1): 6, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30845962

RESUMO

BACKGROUND: Vertebrate genomes contain a record of retroviruses that invaded the germlines of ancestral hosts and are passed to offspring as endogenous retroviruses (ERVs). ERVs can impact host function since they contain the necessary sequences for expression within the host. Dogs are an important system for the study of disease and evolution, yet no substantiated reports of infectious retroviruses in dogs exist. Here, we utilized Illumina whole genome sequence data to assess the origin and evolution of a recently active gammaretroviral lineage in domestic and wild canids. RESULTS: We identified numerous recently integrated loci of a canid-specific ERV-Fc sublineage within Canis, including 58 insertions that were absent from the reference assembly. Insertions were found throughout the dog genome including within and near gene models. By comparison of orthologous occupied sites, we characterized element prevalence across 332 genomes including all nine extant canid species, revealing evolutionary patterns of ERV-Fc segregation among species as well as subpopulations. CONCLUSIONS: Sequence analysis revealed common disruptive mutations, suggesting a predominant form of ERV-Fc spread by trans complementation of defective proviruses. ERV-Fc activity included multiple circulating variants that infected canid ancestors from the last 20 million to within 1.6 million years, with recent bursts of germline invasion in the sublineage leading to wolves and dogs.


Assuntos
Canidae , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Evolução Molecular , Infecções por Retroviridae/veterinária , Animais , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Provírus/classificação , Provírus/genética , Infecções por Retroviridae/virologia
17.
Genes (Basel) ; 10(2)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791656

RESUMO

Retroviruses have invaded vertebrate hosts for millions of years and left an extensive endogenous retrovirus (ERV) record in the host genomes, which provides a remarkable source for an evolutionary perspective on retrovirus-host associations. Here we identified ERV variation across whole-genomes from two chicken lines, derived from a common founder population subjected to 50 years of bi-directional selection on body weight, and a distantly related domestic chicken line as a comparison outgroup. Candidate ERV loci, where at least one of the chicken lines indicated distinct differences, were analyzed for adjacent host genomic landscapes, selective sweeps, and compared by sequence associations to reference assembly ERVs in phylogenetic analyses. Current data does not support selection acting on specific ERV loci in the domestic chicken lines, as determined by presence inside selective sweeps or composition of adjacent host genes. The varying ERV records among the domestic chicken lines associated broadly across the assembly ERV phylogeny, indicating that the observed insertion differences result from pre-existing and segregating ERV loci in the host populations. Thus, data suggest that the observed differences between the host lineages are best explained by substantial standing ERV variation within host populations, and indicates that even truncated, presumably old, ERVs have not yet become fixed in the host population.


Assuntos
Galinhas/genética , Retrovirus Endógenos/genética , Evolução Molecular , Polimorfismo Genético , Animais , Galinhas/virologia , Retrovirus Endógenos/classificação , Genoma , Filogenia
18.
Mol Biol Rep ; 46(2): 1885-1893, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30707417

RESUMO

During the last decades, the prognosis for patients with Hodgkin Lymphoma (HL) has been steadily improved. Nevertheless, new and less toxic therapy strategies have to be developed especially for patients with advanced disease. The activation of human endogenous retroviruses (HERV) is suspected to occur in HL and therefore, HERV might represent interesting target structures. In order to identify transcribed HERV of the HERV-H and HERV-K families in HL we used a reverse transcription-polymerase chain reaction based cloning approach. In addition to unspliced HERV-H and HERV-K transcripts, we detected spliced HERV-K transcripts that matched genomic sequences with the expected splicing-donor and splicing-acceptor sites. Of particular interest was the expression of HERV-K18 related transcripts at the CD48 locus. Our data indicate transcriptional activity of several HERV loci in HL cells.


Assuntos
Retrovirus Endógenos/genética , Doença de Hodgkin/virologia , Antígeno CD48/genética , Linhagem Celular Tumoral , Retrovirus Endógenos/classificação , Humanos , Splicing de RNA , Transcrição Gênica , Ativação Transcricional
19.
Virology ; 526: 52-60, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30342302

RESUMO

Endogenous retroviruses (ERVs) comprise 10% of the genome, with many of these transcriptionally silenced post early embryogenesis. Several stimuli, including exogenous virus infection and cellular transformation can reactivate ERV expression via a poorly understood mechanism. We identified Interferon Regulatory Factor 1 (IRF-1), a tumor suppressor and an antiviral host factor, as a suppressor of ERV expression. IRF-1 decreased expression of a specific mouse ERV in vitro and in vivo. IRF-3, but not IRF-7, also decreased expression of distinct ERV families, suggesting that suppression of ERVs is a relevant biological function of the IRF family. Given the emerging appreciation of the physiological relevance of ERV expression in cancer, IRF-1-mediated suppression of specific ERVs may contribute to the overall tumor suppressor activity of this host factor.


Assuntos
Retrovirus Endógenos/genética , Regulação Viral da Expressão Gênica , Fator Regulador 1 de Interferon/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Células Cultivadas , Retrovirus Endógenos/classificação , Fator Regulador 1 de Interferon/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Proteínas Supressoras de Tumor/genética
20.
Heredity (Edinb) ; 122(2): 187-194, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29976957

RESUMO

Sheep, the Jaagsiekte sheep retrovirus (JSRV) and its endogenous forms (enJSRVs) are a good model to study long-time relationships between retroviruses and their hosts. Taking advantage of 76 whole genome resequencing data of wild and domestic Ovis, we investigated the evolution of this relationship. An innovative analysis of re-sequencing data allowed characterizing 462 enJSRVs insertion sites (including 435 newly described insertions) in the Ovis genus. We focused our study on endogenous copies inserted in the q13 locus of chromosome 6 (6q13). Those copies are known to confer resistance against exogenous JSRV thanks to alleles bearing a mutation in the gag gene. We characterized (i) the distribution of protective and non-protective alleles across Ovis species and (ii) the copy number variation of the 6q13 locus. Our results challenged the previous hypothesis of fixation and amplification of the protective copies in relation with domestication, and allowed building a new model for the evolution of the 6q13 locus. JSRV would have integrated the 6q13 locus after the Ovis-Capra divergence (5-11 MYA) and before the Ovis diversification (2.4-5 MYA). The protective mutation in the enJSRV 6q13 copy appeared shortly after its insertion and was followed by genomic amplifications, after the divergence between Pachyform lineage on one side and the Argaliform and moufloniform lineages on the other (2.4-5 MYA). Considering the potential selective advantage of the protective mutation, its fixation in both sheep and its closest wild relative Ovis orientalis may be due to natural selection before domestication from O. orientalis populations.


Assuntos
Retrovirus Endógenos/isolamento & purificação , Ovinos/imunologia , Ovinos/virologia , Animais , Variações do Número de Cópias de DNA , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Retrovirus Endógenos/fisiologia , Evolução Molecular , Genômica , Cabras/genética , Cabras/imunologia , Cabras/virologia , Retrovirus Jaagsiekte de Ovinos/classificação , Retrovirus Jaagsiekte de Ovinos/genética , Retrovirus Jaagsiekte de Ovinos/isolamento & purificação , Retrovirus Jaagsiekte de Ovinos/fisiologia , Filogenia , Ovinos/genética , Integração Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...